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 Challenge 
• Hurricane landfall location is highly uncertain 
• Present predictions are either stochastic/low fidelity or 

deterministic/medium fidelity/ad-hoc 
• High-fidelity (HF) modeling is resource intensive 
• Many scenarios required 
• Processes are nonlinear and complex 
• Model output is very high-dimensional 

 Support 
• High spatial/temporal correlations 
• Regional HF modeling complete in some regions 
• Many robust approaches to surrogate modeling 
• Strong demand for high fidelity, rapid estimations for emergency 

management and real time/static risk assessment 

Motivation 



Surrogate Techniques:  Data Driven 
• Least squares regression 
• Low dimensional spline interpolation 
• Dimensional functions 
• Polynomial chaos 
• Response surface approximations 
• Artificial neural networks 
• Kriging or Gaussian process emulation 

Surrogate Modeling 



Unique Leveraging Opportunities 
• Disk storage and wide band internet are 

relatively inexpensive 
• Regional high-fidelity modeling is being 

done for federal projects 
• Regional studies represent parameter 

and probability space with an efficient 
sample 

• Coastal Hazards System data with 
NACCS, Gulf of Mexico data 

 

Surrogate Modeling 



Climate and Hydro Modeling 
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Storm Selection 

CHS 

– Water level (storm surge, 
astronomical tide, SLC) 

– Currents 
– Wind speed, direction 
– Wave height, period, direction 

Response Statistics 

Coastal Hazards System 



NACCS – 1050 storms 
• Cp:  915 – 985 mb 
• Vf: 12 – 88 km/hr 
• Rmax:  25 – 174 km 

 

LA/MS – 446 storms 
• Cp:  900 - 975 mb 
• Vf: 11 – 33 km/hr 
• Rmax:  11 – 51 km 

Coastal Hazards System 



Coastal Hazards System 

• NACCS: 19k points 
• LA/MS/TX: 10k points 
• LA grid: 200k points 

 
 



CHS Regional storm modeling 

Study Overview 
Train metamodel 
    Neural Network 
    GPE 

Validate  
metamodel 

NOAA 
cyclone track 
forecast 

Predict 
high-fidelity 
response 

Surrogate Strategy 



Surrogate Modeling 

• Parameterize Forcing, input vector x 
– Land fall location (lat, lon) 
– Angle of storm approach 
– Minimum central pressure 
– Average forward speed 
– Radius of maximum winds 

• Response: Peak and time series of storm surge, wave height, 
wave period, wave direction, wind speed, wind direction, currents 

• Time series: 46.5 hrs, 30 min time step, 21.5 hrs before landfall 
to 24 hrs after 

• Augment data with dry node information 
• Output vector y 
• Perform PCA to obtain latent space z, retain 99.9% of variance 

 

Data Preparation 



ANN Model 
 Kim et al. (2014) 
 Multilayer feed forward network 
 Levenberg-Marquardt algorithm (LMA) 

for surface fitting 
 16 - 25 neurons 
 Training:  70% of storms 
 Validation: 15% of storms 
 Testing:  15% of storms 
 Performance:  correlation coeff > 0.95 

 

Surrogate Modeling 

• Jia and Taflanidis (2013) and 
Kim et al. (2014) 

• Given latent space z … 
• Kriging to obtain predictions and 

statistics of prediction error 

Kriging Model 

Machine learning modeling 
techniques are basically 
weighted interpolation assigning 
a decreasing weight with 
increasing separation distance. 

Seung-Woo Kim et al. 2014. A time-dependent surrogate 
model for storm surge prediction based on an artificial 
neural network using high-fidelity synthetic hurricane 
modeling. Natural Hazards, Springer.  

Jia, G., and Taflanidis, A. A. (2013). "Kriging metamodeling 
for approximation of high-dimensional wave and surge 
responses in real-time storm/hurricane risk assessment." 
Computer Methods in Applied Mechanics and Engineering 
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Artificial Neural Network 

Surge 



Wave Height and Period Training Set Validation 
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Artificial Neural Network 
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Kriging 
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Kriging 

NACCS Surge Training Set Validation – Coefficient of Determination 
18977 points overall mean R2 = 0.95 

Surge 



Kriging 

NACCS Surge Training Set Validation – Correlation Coefficient 
18977 points overall mean RMSE = 0.11 m 

Surge 



Model Validation 

Surrogate Modeling 
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surrogate model
SWAN+ADCIRC
measured data
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surrogate model
SWAN+ADCIRC
measured data

Hurricane Katrina Surge 

Artificial Neural Network Kriging 
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835 points run in 0.018 sec  
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surrogate model
SWAN+ADCIRC
measured data
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surrogate model
SWAN+ADCIRC
measured data
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surrogate model
SWAN+ADCIRC
measured data

Hurricane Gustav Surge 
Artificial Neural Network 

Kriging 

Save Point 9 Save Point 18 Save Point 4 



Real-Time Risk 
Incorporate into, for 
example, HEC-FIA for rapid 
real-time or static hazard, 
vulnerability and risk 
assessment, FRM 

GIS   
Rapid high-fidelity 
flood prediction and 
visualization 

Deployment 
USACE Distribution  
1.CHS-CHRP – stand-alone program 
2.GeoTIFF, SHP files through secure web service 

Surrogate Modeling 



Summary 
• Coastal Hazards System – Regional high-fidelity efficient 

coastal storm data resource 

• High-fidelity storm response surrogate modeling 

• Artificial Neural Network and Kriging 

• Predict surge, significant wave height, peak wave period 

• Model error is reasonably low 

• Computes regional response << 1 sec. 

Surrogate Modeling 



Surrogate Modeling 

Thanks for listening…Questions? 
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